Norway Automotive Fuel Cell Market Overview, 2027

Norway Automotive Fuel Cell Market Overview, 2027

Bonafide Research 27-07-2022 55 Pages Figures : 8 Tables : 16
Region : Europe Country : Norway Category : Automotive & Transport Automotive

Global energy consumption is increasing in proportion to rising demand from the population, and fossil fuels remain the main energy source. This continuous exploitation has resulted in energy shortages and also serious environmental pollution. Thus, reducing environmental pollution and developing diverse renewable and clean energy sources is the need of the hour. The automotive fuel cell converts chemical energy into electricity through electrochemical reactions. They are highly efficient, environmentally-friendly, and diverse fuels. Hence, it is regarded as the most promising green and efficient power generation technology of the 21st century that has a wide range of applications. Automotive technology is an appealing offer since automotive fuel cells allow them to produce high-energy cells capable of powering vehicles with no emissions. Factors such as government backing and policies with increased consumer awareness are expected to bolster demand in future years. According to the Bonafide research report titled "Norway Automotive Fuel Cell Market Overview, 2027", published by Bonafide Research, the automotive fuel cell market is anticipated to grow at a fast-paced CAGR over the forecast period. The Proton Exchange Membrane Fuel Cell is the most widely used electrotype as it requires low temperatures for working and gives out a fast dynamic response to be used in automotive fuel cells. They are ideal replacements for internal combustion engines. Although the hydrogen supply chain is still in its infancy, and transportation and storage costs are high, these are barriers to its use in automotive applications. South Korea leads the market in automotive fuel cells. On the other hand, methanol is not used in automotive fuel cells as they are more difficult to ignite than gasoline and burn about 60% slower, resulting in a much cooler flame. The limitations are methanol crossover from the anode to the cathode across the membrane separator, carbon monoxide poisoning, high polarisation of the anode for the oxidation of methanol, and system design. However, it is safe to use in small amounts, but its uncontrolled use can result in corrosion and damage to sensitive gaskets and hoses in the fuel system. A power output of below 100 kW is used most widely in automotive fuel cells. Automotive fuel cells provide a long driving range, quick refilling, and quiet operation and air pollution. They are scalable and diverse sources of electricity that can be used in a wide array of vehicles like buses, trains, autos, and defence and light commercial vehicles. The research and development is carried out for cell-powered cars, which would open up new markets. Portable power production units have increased in recent years. The growing interest of governments in fuel cell based electricity generation is expected to drive future market demands. PEM technology was invented by General Electric back in the 1960’s by Thomas Grubb and Leonard Niedrach. It was first used in U.S. Navy ships and the U.S. Army Signal Corps, where the units were fuelled by hydrogen generated by mixing water and lithium hydride. Over the years, a lot of innovations have been made to be used in varied applications. By electrolyte type, proton exchange membrane fuel cells have the major market share and are expected to be in use over the forecast period. This is because it is one of the most distinguished fuel cell types, which is fed hydrogen, oxidised at the anode, and oxygen is lowered at the cathode. These are promising substitutes to fossil fuels and reduce overall energy consumption and emit almost no carbon. It is a highly portable energy that can be used in automobiles. However, the only drawbacks are its high cost and low durability. These can be overcome by improvements in performance, durability, and cost competitiveness with conventional energy conversion and power generation systems. Efficient diagnostics tools are required to detect failures and mitigate losses. There is still a long way for PEM cells to be frequently used in energy applications for automobiles or thermal power plants. Research & development is needed to lower costs, increase durability, and improve performance. Apart from automobiles, these are also used in stationery and portable electronics as an alternative power source. The COVID-19 pandemic has impacted the market as severely as it has impacted the other automotive segments. The market experienced a downfall during the Norwayx lockdown. The pandemic affected hydrogen supply chains across the globe. It affected the hydrogen consumption of oil refining, steel production, and the chemical sector. The International Energy Agency expected a decline in methanol fuel cells due to the pandemic. However, the automotive fuel cell market recovered rapidly. Fuel cell vehicles and fuel cells are no longer part of an experiment in the eyes of the public but are recognised as one of the key driving technologies for now and the future of mobility. Considered in this report Geography: Norway Base year: 2021 Estimated year: 2022 Forecast year: 2027 Aspects covered in this report Norway Automotive Fuel Cell market with its value and forecast along with its segments Various drivers and challenges On-going trends and developments Top profiled companies Strategic recommendation Types of Electrolyte in the report Proton Exchange Membrane Fuel Cell Direct Methanol Fuel Cell Type of Fuel in the report Hydrogen Fuel Methanol Fuel By Power Output: Below 100KW 100KW to 200KW Above 200KW The approach of the report: This report consists of a combined approach of primary as well as secondary research. Initially, secondary research was used to get an understanding of the market and listing out the companies that are present in the market. The secondary research consists of third party sources such as press releases, annual report of companies, analyzing the government generated reports and databases. After gathering the data from secondary sources primary research was conducted by making telephonic interviews with the leading players about how the market is functioning and then conducted trade calls with dealers and distributors of the market. Post this we have started doing primary calls to consumers by equally segmenting consumers in regional aspects, tier aspects, age group, and gender. Once we have primary data with us we have started verifying the details obtained from secondary sources. Intended audience This report can be useful to industry consultants, manufacturers, suppliers, associations & organizations related to fuel cell industry, government bodies and other stakeholders to align their market-centric strategies. In addition to marketing & presentations, it will also increase competitive knowledge about the industry. Please get in touch with our sales team to find out more.

Read More

Card image cap

Interested in this report?
Get your FREE sample!

Requirement Gathering & Methodology
Data Collection Techniques
Our Research Team & Data Sourcing
Data Science & Analytical Tools
Data Visualization & Presentation Skills
Project/ Report Delivery & After Sales Services